This booklet has been prepared to help emergency response professionals identify Honda gasoline-electric hybrids and respond safely to incidents involving these vehicles.

Part 1 presents general information and recommendations that apply to all Honda hybrids produced through the 2012 model year. Part 2 contains model-specific information for each of the four hybrid models: the Insight, the Civic Hybrid, the Accord Hybrid, and the CR-Z. This guide will be updated or replaced as Honda continues to introduce new hybrid vehicles.

We hope this publication provides the kind of information you need. This booklet is available for reference or downloading at https://techninfo.honda.com. If you have any questions or wish to order additional printed copies please contact your local Honda dealer or Honda Automobile Customer Service at 1-800-999-1009.

American Honda wants to thank you for your concern and efforts in protecting Honda customers and the general public.
This booklet has been prepared to help emergency response professionals identify Honda gasoline-electric hybrids and respond safely to incidents involving these vehicles.

Part 1 presents general information and recommendations that apply to all Honda hybrids produced through the 2012 model year. Part 2 contains model-specific information for each of the four hybrid models: the Insight, the Civic Hybrid, the Accord Hybrid, and the CR-Z. This guide will be updated or replaced as Honda continues to introduce new hybrid vehicles.

We hope this publication provides the kind of information you need. This booklet is available for reference or downloading at https://techninfo.honda.com. If you have any questions or wish to order additional printed copies please contact your local Honda dealer or Honda Automobile Customer Service at 1-800-999-1099.

American Honda wants to thank you for your concern and efforts in protecting Honda customers and the general public.
IDENTIFYING A HONDA HYBRID

The Insight can be identified by its aerodynamic shape and by the name Insight and a hybrid badge on the rear of the vehicle. The 2000-2006 models have rear fender skirts, whereas later models do not.

Except for a few minor differences in equipment, such as a roof antenna, there is very little difference in the exterior or interior appearance of the Civic and Accord hybrids compared to those of their gasoline-powered counterparts.

The CR-Z is a two-door, two-passenger sports car.

The easiest way to identify a hybrid is by the word HYBRID on the rear of the vehicle. If the word hybrid is not visible on the rear of a vehicle, due to damage for example, the presence of orange cables under the hood, or orange shielding under the car, would also identify the vehicle as a hybrid.

GASOLINE ENGINE

The main power source of all Honda hybrids is a conventional gasoline engine, located under the hood.

ELECTRIC MOTOR

During start-up and acceleration, an electric motor, located between the engine and the transmission, provides assistance to the engine. During braking and deceleration, the motor acts as a generator, recharging both the high-voltage battery module and the 12-volt battery.

12-VOLT BATTERY

A conventional 12-volt battery, also located under the hood, powers all standard electronics. In Honda hybrids, this battery also provides power to the high-voltage battery control systems. Disconnecting or cutting the negative cable to the battery may be necessary in some emergency situations.

UNDERHOOD FUSE BOX

All Honda hybrids except the 2010 and later Insights and the CR-Z have a fuse box under the hood on the driver’s side of the engine compartment. Removing the main fuse from the box may be required in some emergency situations.

POSITIVE BATTERY TERMINAL

With 2010 and newer Insights and the CR-Z, the main fuse is located in the positive battery terminal. Cutting or removing the DC to DC converter cable, which is connected to this terminal, may be required in some emergency situations.
IDENTIFYING A HONDA HYBRID

The Insight can be identified by its aerodynamic shape and by the name Insight and a hybrid badge on the rear of the vehicle. The 2000-2006 models have rear fender skirts, whereas later models do not.

Exceptional for a few minor differences in equipment, such as a roof antenna, there is very little difference in the exterior or interior appearance of the Civic and Accord hybrids compared to those of their gasoline-powered counterparts.

The CR-Z is a two-door, two-passenger sports car.

The easiest way to identify a hybrid is by the word HYBRID on the rear of the vehicle. If the word hybrid is not visible on the rear of a vehicle, due to damage for example, the presence of orange cables under the hood, or orange shielding under the car, would also identify the vehicle as a hybrid.

GASOLINE ENGINE

The main power source of all Honda hybrids is a conventional gasoline engine, located under the hood.

ELECTRIC MOTOR

During start-up and acceleration, an electric motor, located between the engine and the transmission, provides assistance to the engine. During braking and deceleration, the motor acts as a generator, recharging both the high-voltage battery module and the 12-volt battery.

12-VOLT BATTERY

A conventional 12-volt battery, also located under the hood, powers all standard electronics. In Honda hybrids, this battery also provides power to the high-voltage battery control systems. Disconnecting or cutting the negative cable to the battery may be necessary in some emergency situations.

UNDERHOOD FUSE BOX

All Honda hybrids except the 2010 and later Insights and the CR-Z have a fuse box under the hood on the driver’s side of the engine compartment. Removing the main fuse from the box may be required in some emergency situations.

POSITIVE BATTERY TERMINAL

With 2010 and newer Insights and the CR-Z, the main fuse is located in the positive battery terminal. Cutting or removing the DC to DC converter cable, which is connected to this terminal, may be required in some emergency situations.
HIGH-VOLTAGE BATTERY MODULES

The electric motors in all Honda hybrid models except the 2012 Civic hybrid are powered by a nickel-metal-hydride (NiMH) battery module. This type of battery contains groups, or “sticks,” of 1.2-volt cells, each about the size of a D-cell battery. The number of cells varies by vehicle model, and total voltages range from 100-160 volts.

The electric motor in the 2012 Civic hybrid is powered by a lithium ion (Li-Ion) battery module. This battery contains four groups, or “stacks,” of ten 3.6-volt cells, each a little larger than a typical cell phone. The total voltage is 144 volts, very similar to the NiMH batteries that power other Honda hybrids.

Since both types of battery modules are recharged whenever a Honda hybrid vehicle decelerates, neither ever needs external charging.

HIGH-VOLTAGE BATTERY BOX

Each high-voltage battery module is stored in a sturdy box, such as the one shown here with the lid removed. The box contains other important components which, together with the battery, make up the Intelligent Power Unit (IPU). All components inside the battery box are completely insulated and isolated from the vehicle body.

For maximum safety, the battery box is positioned in the rear of the vehicle where it is well-protected from potential damage in a collision.

HIGH-VOLTAGE CABLES

Electrical energy flows between the high-voltage battery module and the motor through heavy-duty orange cables.

In the Accord Hybrids and the 2006-2012 Civic Hybrids, high-voltage cables also deliver current to the air conditioning (AC) compressor. This allows the AC to continue running when the vehicle is in the Auto Idle Stop mode. (Under certain conditions, Auto Idle Stop automatically turns the engine off when the car comes to a stop, at a stop light for example.)

Between the battery box and the engine compartment, the high-voltage cables are routed under the vehicle inside sturdy orange plastic protective shields. Where the cables lie close to the exhaust system, a metal thermal shield covers, but does not obscure, the orange high-voltage shield.

To improve aerodynamics and fuel efficiency, some sections of the high-voltage cables are located behind paneling. High-voltage alert symbols may be stamped into the paneling to indicate the cables’ path.
Vehicle Description

HIGH-VOLTAGE BATTERY MODULES

The electric motors in all Honda hybrid models except the 2012 Civic hybrid are powered by a nickel-metal-hydride (NiMH) battery module. This type of battery contains groups, or “sticks,” of 1.2-volt cells, each about the size of a D-cell battery. The number of cells varies by vehicle model, and total voltages range from 100-160 volts.

The electric motor in the 2012 Civic hybrid is powered by a lithium ion (Li-Ion) battery module. This battery contains four groups, or “stacks,” of ten 3.6-volt cells, each a little larger than a typical cell phone. The total voltage is 144 volts, very similar to the NiMH batteries that power other Honda hybrids.

Since both types of battery modules are recharged whenever a Honda hybrid vehicle decelerates, neither ever needs external charging.

HIGH-VOLTAGE BATTERY BOX

Each high-voltage battery module is stored in a sturdy box, such as the one shown here with the lid removed. The box contains other important components which, together with the battery, make up the Intelligent Power Unit (IPU). All components inside the battery box are completely insulated and isolated from the vehicle body.

For maximum safety, the battery box is positioned in the rear of the vehicle where it is well-protected from potential damage in a collision.

HIGH-VOLTAGE CABLES

Electrical energy flows between the high-voltage battery module and the motor through heavy-duty orange cables. In the Accord Hybrids and the 2006-2012 Civic Hybrids, high-voltage cables also deliver current to the air conditioning (AC) compressor. This allows the AC to continue running when the vehicle is in the Auto Idle Stop mode. (Under certain conditions, Auto Idle Stop automatically turns the engine off when the car comes to a stop, at a stop light for example.)

Between the battery box and the engine compartment, the high-voltage cables are routed under the vehicle inside sturdy orange plastic protective shields. Where the cables lie close to the exhaust system, a metal thermal shield covers, but does not obscure, the orange high-voltage shield.

To improve aerodynamics and fuel efficiency, some sections of the high-voltage cables are located behind paneling. High-voltage alert symbols (\(\text{Alert Symbols}\)) may be stamped into the paneling to indicate the cables’ path.
Honda hybrids do not present any unusual hazards. The vehicles have performed well in standard crash tests, with no damage to high-voltage components in front, side, or rear impacts.

FLAMMABLE FLUIDS
Gasoline-electric hybrids have the same potential fire and explosion hazards as conventional vehicles. (See model-specific pages for flammable fluid capacities.)

UNDEPLOYED AIRBAGS AND TENSIONERS
All Honda hybrids have front airbags and front seat belt tensioners. All except 2000-2006 Insights have side airbags in front, and side curtain airbags are standard in all Accords, 2006 and later Civics, 2010 and newer Insights, and CR-Zs. These systems all use pyrotechnic devices with a deactivation time of 3 minutes.

As with other airbag-equipped vehicles, being struck by a deploying front or side airbag, or cutting into an unactivated inflator, can result in moderate to severe injuries. Injuries can also result from contact with a deploying side curtain airbag, or having a seat belt tensioner activate unexpectedly.

To reduce the risk of injury during the deactivation period, we recommend the following:

- Keep out of the path of an undeployed front airbag, and do not cut into the center of the steering wheel or dashboard where the front airbags are stored.
- Do not cut into the rear (C) pillar on Accords, CR-Zs, 2006 and later Civics, and 2010 and newer Insights, as that is where side curtain inflators are stored.
- Be aware that extreme heat (320-356°F, 160-180°C) can cause unintended airbag inflation.

Follow recommended procedures to avoid possible injury from a deploying airbag or inflator.

ELECTRIC SHOCK POTENTIAL
Unprotected contact with any electrically charged (“hot” or “live”) high-voltage component can cause serious injury or death. However, receiving an electric shock from a Honda hybrid is highly unlikely because of these facts:

- Contact with the battery module or other components inside the battery box can occur only if the box is damaged and the contents are exposed, or the box is opened without following proper precautions.
- Contact with the electric motor can occur only after one or more components are removed.
- The high-voltage cables can be easily identified by their distinctive orange color, and contact with them can be avoided.

It’s also important to understand in what situations the high-voltage cables can potentially be “hot”:

All Honda Hybrids: Whenever the ignition switch is in the ON position and the engine is running, the high-voltage battery is either supplying current to the electric motor or receiving current generated by the electric motor.

Potential Hazards

<table>
<thead>
<tr>
<th>Current Flows from Battery to Motor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cables “Hot”</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Current Flows from Motor to Battery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cables “Hot”</td>
</tr>
</tbody>
</table>
Honda hybrids do not present any unusual hazards. The vehicles have performed well in standard crash tests, with no damage to high-voltage components in front, side, or rear impacts.

FLAMMABLE FLUIDS
Gasoline-electric hybrids have the same potential fire and explosion hazards as conventional vehicles. (See model-specific pages for flammable fluid capacities.)

UNDEPLOYED AIRBAGS AND TENSIONERS
All Honda hybrids have front airbags and front seat belt tensioners. All except 2000-2006 Insights have side airbags in front, and side curtain airbags are standard in all Accords, 2006 and later Civics, 2010 and newer Insights, and CR-Zs. These systems all use pyrotechnic devices with a deactivation time of 3 minutes.

As with other airbag-equipped vehicles, being struck by a deploying front or side airbag, or cutting into an unactivated inflator, can result in moderate to severe injuries. Injuries can also result from contact with a deploying side curtain airbag, or having a seat belt tensioner activate unexpectedly.

To reduce the risk of injury during the deactivation period, we recommend the following:

- Keep out of the path of an undeployed front airbag, and do not cut into the center of the steering wheel or dashboard where the front airbags are stored.

- Do not cut into the rear (C) pillar on Accords, CR-Zs, 2006 and later Civics, and 2010 and newer Insights, as that is where side curtain inflators are stored.

- Be aware that extreme heat (320-356°F; 160-180°C) can cause unintended airbag inflation.

ELECTRIC SHOCK POTENTIAL
Unprotected contact with any electrically charged (“hot” or “live”) high-voltage component can cause serious injury or death. However, **receiving an electric shock from a Honda hybrid is highly unlikely** because of these facts:

- Contact with the battery module or other components inside the battery box can occur only if the box is damaged and the contents are exposed, or the box is opened without following proper precautions.

- Contact with the electric motor can occur only after one or more components are removed.

- The high-voltage cables can be easily identified by their distinctive orange color, and contact with them can be avoided.

It’s also important to understand in what situations the high-voltage cables can potentially be “hot”:

All Honda Hybrids:
Whenever the ignition switch is in the ON position and the engine is running, the high-voltage battery is either supplying current to the electric motor or receiving current generated by the electric motor.
Potential Hazards

Accord and 2006-2012 Civic Hybrids: With these models, the high-voltage battery powers the air conditioner compressor as well as the electric motor. So, if the ignition switch is in the ON position, the air conditioner is on, and the engine has been turned off by the Auto Idle Stop feature (at a stop light, for example), current will flow through the cables to the air conditioner compressor.

Regardless of the model, if the ignition switch is turned off, the flow of high-voltage current will stop.

The lesson, therefore, is **Electric current cannot flow into the high-voltage cables when the ignition is OFF.**

HIGH-VOLTAGE BATTERY ELECTROLYTE

Small quantities of a highly alkaline liquid electrolyte, which is corrosive to human tissue, are used in the manufacture of the NiMH high-voltage battery cells in all Honda hybrids except the 2012 Civic Hybrid. However, in the finished cells, electrolyte is non-liquid and sealed in a sturdy case, and any leakage would be rare. The electrolyte is also non-flammable, non-explosive, and it creates no hazardous fumes or vapors in normal operating conditions, or in a fire.

The electrolyte in the Li-Ion battery module in the 2012 Civic Hybrid is flammable and will burn if the battery box is broken open, giving off gases that can cause irritation if inhaled. To extinguish a burning battery, the manufacturer recommends CO2 or an abundance of water.

12-VOLT BATTERY ELECTROLYTE

Any hazards from contact with the 12-volt battery electrolyte are the same as those with batteries in conventional passenger vehicles.

Emergency Procedures

Based on discussions with rescue professionals, we recommend that emergency response personnel follow standard procedures developed by their own organization for assessing situations and dealing with potential hazards. Given our knowledge of Honda hybrids, we also recommend that you use the procedures outlined in this section.

VEHICLE FIRE

There are no unusual hazards if a Honda hybrid is involved in a fire. If the 2012 Civic Hybrid’s Li-Ion battery box is engulfed in flames, or temperatures reach above 266ºF (130ºC), a pressure relief valve will open and release pressure, so the battery should not explode. However, the contents will burn, giving off gases that can cause irritation if inhaled. To extinguish a burning battery, the manufacturer recommends CO2 or an abundance of water.

SUBMERGED OR PARTIALLY SUBMERGED VEHICLE

Pull the vehicle out of the water, then use one of the procedures described below for preventing electric current from flowing through the high-voltage cables. There is no risk of electric shock from touching the car’s body or framework—in or out of the water.

PREVENTING CURRENT FLOW THROUGH HIGH-VOLTAGE CABLES

Before attempting to rescue occupants or move a damaged Honda hybrid, you should reduce the potential for current to flow from the electric motor or the battery module through the high-voltage cables.

There are two recommended methods for preventing current flow. These are discussed on the following pages.
Current Flows from Battery to AC Compressor

Cables "Hot"

Ignition Switch is OFF

Cables NOT "Hot"

Electrolyte in the high-voltage battery cells is non-liquid and should not present a hazard.

Potential Hazards

Accord and 2006-2012 Civic Hybrids: With these models, the high-voltage battery powers the air conditioner compressor as well as the electric motor. So, if the ignition switch is in the ON position, the air conditioner is on, and the engine has been turned off by the Auto Idle Stop feature (at a stop light, for example), current will flow through the cables to the air conditioner compressor.

Regardless of the model, if the ignition switch is turned off, the flow of high-voltage current will stop.

The lesson, therefore, is: Electric current cannot flow into the high-voltage cables when the ignition is OFF.

HIGH-VOLTAGE BATTERY ELECTROLYTE

Small quantities of a highly alkaline liquid electrolyte, which is corrosive to human tissue, are used in the manufacture of the NiMH high-voltage battery cells in all Honda hybrids except the 2012 Civic Hybrid. However, in the finished cells, electrolyte is non-liquid and sealed in a sturdy case, and any leakage would be rare. The electrolyte is also non-flammable, non-explosive, and it creates no hazardous fumes or vapors in normal operating conditions, or in a fire.

The electrolyte in the Li-Ion battery module in the 2012 Civic Hybrid is flammable and will burn if the battery box is broken open, giving off gases that can cause irritation if inhaled. To extinguish a burning battery, the manufacturer recommends CO2 or an abundance of water.

The electrolyte in the high-voltage battery cells is non-liquid and should not present a hazard.

12-VOLT BATTERY ELECTROLYTE

Any hazards from contact with the 12-volt battery electrolyte are the same as those with batteries in conventional passenger vehicles.

Emergency Procedures

Based on discussions with rescue professionals, we recommend that emergency response personnel follow standard procedures developed by their own organization for assessing situations and dealing with potential hazards. Given our knowledge of Honda hybrids, we also recommend that you use the procedures outlined in this section.

VEHICLE FIRE

There are no unusual hazards if a Honda hybrid is involved in a fire. If the 2012 Civic Hybrid’s Li-Ion battery box is engulfed in flames, or temperatures reach above 266ºF (130ºC), a pressure relief valve will open and release pressure, so the battery should not explode. However, the contents will burn, giving off gases that can cause irritation if inhaled. To extinguish a burning battery, the manufacturer recommends CO2 or an abundance of water.

SUBMERGED OR PARTIALLY SUBMERGED VEHICLE

Pull the vehicle out of the water, then use one of the procedures described below for preventing electric current from flowing through the high-voltage cables. There is no risk of electric shock from touching the car’s body or framework—in or out of the water.

PREVENTING CURRENT FLOW THROUGH HIGH-VOLTAGE CABLES

Before attempting to rescue occupants or move a damaged Honda hybrid, you should reduce the potential for current to flow from the electric motor or the battery module through the high-voltage cables.

There are two recommended methods for preventing current flow. These are discussed on the following pages.
Part: 1

Emergency Procedures

BEST METHOD FOR PREVENTING HIGH-VOLTAGE CURRENT FLOW (ALL MODELS)

Turn the ignition switch off.

This simple action turns off the engine and the electric motor and cuts power to the high-voltage system controllers, thereby preventing current flow into the cables. It also turns off power to the airbags and the seat belt tensioners.

After you turn the ignition switch off, remove the key so the car cannot be accidentally restarted.

SECOND-BEST METHOD FOR PREVENTING HIGH-VOLTAGE CURRENT FLOW (ALL MODELS EXCEPT 2010-2012 INSIGHTS AND CR-Zs)

Cut both negative 12-volt battery cables and remove the main fuse.

Together, cutting the negative 12-volt battery cables and removing the main fuse turns off the engine and the electric motor and cuts power to the high-voltage system controllers, thereby preventing current flow into the cables. It also cuts power to the airbags and the seat belt tensioners.

1. Locate the 12-volt battery and cut the negative cables with diagonal cutters.

2. Locate the underhood fuse box, and remove the cover (see model-specific pages for fuse box locations).

3. Locate the main fuse by referring to the diagram on top of, or inside, the fuse box cover. (The 2000-2006 Insight fuse box is shown here only as an example. See the model-specific pages for photos of the Civic and Accord Hybrid fuse boxes.)

4. Using a Phillips screwdriver, unscrew the main fuse assembly and remove it from the box. (The 2003-2005 Civic Hybrid main fuse screws are shown here as an example. See the model specific pages for the locations of the main fuse screws in the 2006-2012 Civic Hybrids, the 2010-2006 Insight, and the Accord Hybrid.)

NOTE: If you cannot perform either method to stop the engine and prevent current flow into the high-voltage cables, use extreme care, do not cut into the cables, and do not touch damaged cables as they may be “hot.”
1. Locate the 12-volt battery and cut the negative cables with diagonal cutters.

2. Locate the underhood fuse box, and remove the cover (see model-specific pages for fuse box locations).

3. Locate the main fuse by referring to the diagram on top of, or inside, the fuse box cover. (The 2000-2006 Insight fuse box is shown here only as an example. See the model-specific pages for photos of the Civic and Accord Hybrid fuse boxes.)

4. Using a Phillips screwdriver, unscrew the main fuse assembly and remove it from the box. (The 2003-2005 Civic Hybrid main fuse screws are shown here as an example. See the model-specific pages for the locations of the main fuse screws in the 2006-2012 Civic Hybrids, the 2010-2012 Insight, and the Accord Hybrid.)

NOTE: If you cannot perform either method to stop the engine and prevent current flow into the high-voltage cables, use extreme care, do not cut into the cables, and do not touch damaged cables as they may be “hot.”
SECOND-BEST METHOD FOR PREVENTING HIGH-VOLTAGE CURRENT FLOW *(2010-2012 INSIGHT AND CR-Z)*

Cut the negative 12-volt battery cable, then cut or disconnect the DC to DC converter cable at the positive battery terminal.

Together, cutting the 12-volt negative cable and cutting or disconnecting the DC to DC converter cable turns off the engine and the electric motor and cuts power to the high-voltage system controllers. This stops the flow of current into the high-voltage cables and cuts power to the airbags and the seat belt tensioners.

1. Locate the 12-volt battery and cut the negative battery cable.

2. Locate the positive battery terminal and remove the cover.

EXTRICATING OCCUPANTS

If cutters or spreaders are needed to allow occupants to be rescued, make sure to stay within the cut zones recommended on the following pages.

MOVING AND TOWING A HONDA HYBRID

If a disabled vehicle needs to be moved a short distance (to the side of the road, for example), and the car can still roll on the ground, the easiest way is to shift the transmission into neutral and manually push the vehicle.

To transport a vehicle away from an emergency location, a flatbed truck should be used if the vehicle might be repaired. If a flatbed is not available, the vehicle should be towed by wheel-lift equipment with the front wheels off the ground. Do not use sling-type towing equipment unless the car has been damaged beyond repair.
Emergency Procedures

SECOND-BEST METHOD FOR PREVENTING HIGH-VOLTAGE CURRENT FLOW (2010-2012 INSIGHT AND CR-Z)

Cut the negative 12-volt battery cable, then cut or disconnect the DC to DC converter cable at the positive battery terminal.

Together, cutting the 12-volt negative cable and cutting or disconnecting the DC to DC converter cable turns off the engine and the electric motor and cuts power to the high-voltage system controllers. This stops the flow of current into the high-voltage cables and cuts power to the airbags and the seat belt tensioners.

1. Locate the 12-volt battery and cut the negative battery cable.

2. Locate the positive battery terminal and remove the cover.

EXTRICATING OCCUPANTS

If cutters or spreaders are needed to allow occupants to be rescued, make sure to stay within the cut zones recommended on the following pages.

MOVING AND TOWING A HONDA HYBRID

If a disabled vehicle needs to be moved a short distance (to the side of the road, for example), and the car can still roll on the ground, the easiest way is to shift the transmission into neutral and manually push the vehicle.

To transport a vehicle away from an emergency location, a flatbed truck should be used if the vehicle might be repaired. If a flatbed is not available, the vehicle should be towed by wheel-lift equipment with the front wheels off the ground. Do not use sling-type towing equipment unless the car has been damaged beyond repair.

3. Cut or disconnect the DC to DC converter cable.
2000-2006 Honda Insight

IDENTIFYING THE INSIGHT

2000-2006 Insight models are 2-passenger cars with a distinctive aerodynamic shape and rear fender skirts.

Depending on the model year, a hybrid label will appear on the right or left rear of the vehicle.

KEY COMPONENTS

- **Fuel Lines**
- **Fuel Tank**
- **Engine**
- **Motor**
- **Transmission**
- **Underhood Fuse Box**
- **12V Battery**
- **High-Voltage Cables**
- **High-Voltage Battery Box**

FLAMMABLE FLUIDS

- **Gasoline:** 10.6 gallons (40 liters)
- **Engine Oil:** 3.2 quarts (3.0 liters)
- **Transmission Fluid:**
 - CVT: 3.4 quarts (3.2 liters)
 - Manual: 1.6 quarts (1.5 liters)

AIRBAGS AND TENSIONERS

- **Front Airbags:** Driver & passenger
- **Tensioners:** Driver & passenger

UNDERHOOD COMPONENTS

- **Main Fuse Location**

MAIN FUSE LOCATION

- **Engine**, **Motor**, **12-Volt Battery**, **Underhood Fuse Box**, **Main Fuse Screws**

CUT ZONE

- **Engine, Motor & Transmission**
- **Underhood Fuse Box**
- **12V Battery**
- **Fuel Tank**
- **High-Voltage Cables**
- **High-Voltage Battery Box**
Identifying the Insight

2000-2006 Insight models are 2-passenger cars with a distinctive aerodynamic shape and rear fender skirts. Depending on the model year, a hybrid label will appear on the right or left rear of the vehicle.

Key Components

- Engine
- Motor
- Transmission
- Underhood Fuse Box
- 12V Battery
- High-Voltage Cables
- Fuel Tank
- High-Voltage Battery Box

Underhood Components

![Diagram showing underhood components with labels for engine, motor, 12-volt battery, and underhood fuse box.]

Main Fuse Location

![Diagram showing main fuse screws located near the underhood fuse box.]

Flammable Fluids

- Gasoline: 10.6 gallons (40 liters)
- Engine Oil: 3.2 quarts (3.0 liters)
- Transmission Fluid:
 - CVT: 3.4 quarts (3.2 liters)
 - Manual: 1.6 quarts (1.5 liters)

Airbags and Tensioners

- Front Airbags: Driver & passenger
- Tensioners: Driver & passenger

Cut Zone

![Diagram showing the cut zone with labels for engine, motor, transmission, and fuel tank, with the 12-volt battery and high-voltage battery box also visible.]

Depending on the model year, a hybrid label will appear on the right or left rear of the vehicle.
IDENTIFYING THE INSIGHT

The 2010-2012 Insight is a 4-door, 4-passenger vehicle. A hybrid badge appears on the right rear of the vehicle.

KEY COMPONENTS

- Engine
- Motor
- Transmission
- 12V Battery
- Positive Battery Terminal
- Fuel Lines
- Fuel Tank
- High-Voltage Cables
- High-Voltage Battery Box

FLAMMABLE FLUIDS

- Gasoline: 10.6 gallons (40 liters)
- Engine Oil: 3.8 quarts (3.6 liters)
- Transmission Fluid: 5.5 quarts (2.2 liters)

AIRBAGS AND TENSIONERS

- Front Airbags: Driver & front passenger
- Tensioners: Driver & front passenger
- Side airbags: Driver & front passenger
- Side curtain airbags: Driver, front passenger & outer rear passengers

UNDERHOOD COMPONENTS

- Engine
- Motor
- Positive Battery Terminal
- DC to DC Converter Cable Connection
- 12 Volt Battery
- Side Curtain Inflators

CUT ZONE

- Engine, Motor & Transmission
- High-Voltage Cables
- Fuel Tank
- 12V Battery
- Positive Battery Terminal
- High-Voltage Battery Box
2010-2012 Honda Insight

IDENTIFYING THE INSIGHT

The 2010-2012 Insight is a 4-door, 4-passenger vehicle.

A hybrid badge appears on the right rear of the vehicle.

KEY COMPONENTS

- Engine
- Motor
- Transmission
- 12V Battery
- Positive Battery Terminal
- Fuel Lines
- Fuel Tank
- High-Voltage Cables
- High-Voltage Battery Box

2010-2012 Honda Insight

FLAMMABLE FLUIDS

- Gasoline: 10.6 gallons (40 liters)
- Engine Oil: 3.8 quarts (3.6 liters)
- Transmission Fluid: 5.5 quarts (5.2 liters)

AIRBAGS AND TENSIONERS

- Front Airbags: Driver & front passenger
- Tensioners: Driver & front passenger
- Side airbags: Driver & front passenger
- Side curtain airbags: Driver, front passenger & outer rear passengers

UNDERHOOD COMPONENTS

- Positive Battery Terminal
- DC to DC Converter
- Cable Connection

POSITIVE BATTERY TERMINAL

- Engine
- Motor
- Positive Battery Terminal
- 12 Volt Battery

CUT ZONE

- Side Curtain Airbag Inflators
- Engine, Motor & Transmission
- High-Voltage Cables
- Fuel Tank
- 12V Battery
Part: 2

Identifying the Civic Hybrid

The Civic Hybrid appears virtually the same as a conventional Civic. Look for a Hybrid label or badge on the right or left rear at the level shown above.

Key Components

- Engine
- Motor
- Transmission
- 12V Battery
- Underhood Fuse Box
- Fuel Lines
- Fuel Tank
- High-Voltage Battery Box
- High-Voltage Cables

2003-2005 Honda Civic Hybrid

Part: 2

Flammable Fluids

- Gasoline: 13.2 gallons (50 liters)
- Engine Oil: 3.2 quarts (3.0 liters)
- Transmission Fluid:
 - CVT: 3.4 quarts (3.2 liters)
 - Manual: 1.6 quarts (1.5 liters)

Airbags and Tensioners

- Front Airbags: Driver & front passenger
- Side Airbags: Driver & front passenger
- Tensioners: Driver & front passenger

Underhood Components

- Engine
- Motor
- 12-Volt Battery
- Underhood Fuse Box
- Main Fuse Screws

Main Fuse Location

- Engine
- Motor
- 12-Volt Battery
- Underhood Fuse Box
- Main Fuse Screws

Cut Zone

- Engine, Motor & Transmission
- High-Voltage Cables
- Fuel Tank
- 12V Battery
- Underhood Fuse Box
- High-Voltage Battery Box
- Engine, Motor & Transmission
IDENTIFYING THE CIVIC HYBRID

The Civic Hybrid appears virtually the same as a conventional Civic.

Look for a Hybrid label or badge on the right or left rear at the level shown above.

KEY COMPONENTS

High-Voltage Cables

12V Battery

Engine

Motor

Transmission

Fuel Lines

Fuel Tank

High-Voltage Battery Box

Underhood Fuse Box

UNDERHOOD COMPONENTS MAIN FUSE LOCATION

Motor

12-Volt Battery

Engine

Underhood Fuse Box

12-Volt Battery Box

Hybrid Badge or Label

CUT ZONE

Airbags and Tensioners

Front Airbags: Driver & front passenger

Side Airbags: Driver & front passenger

Tensioners: Driver & front passenger

FLAMMABLE FLUIDS

Gasoline: 13.2 gallons (50 liters)

Engine Oil: 3.2 quarts (3.0 liters)

Transmission Fluid:

CVT: 3.4 quarts (3.2 liters)

Manual: 1.6 quarts (1.5 liters)
IDENTIFYING THE CIVIC HYBRID

The appearance of 2006-2011 Civic Hybrids is essentially the same as conventional Civic Sedans. The word “Hybrid” appears on the right rear of these vehicles.

KEY COMPONENTS

- Engine
- High-Voltage Cables
- High-Voltage Battery Box
- Motor
- 12V Battery
- Underhood Fuse Box
- Fuel Lines
- Fuel Tank

FLAMMABLE FLUIDS

- Gasoline: 12.4 gallons (47 liters)
- Engine Oil: 4.0 quarts (3.8 liters)
- Transmission Fluid: 5.4 quarts (5.1 liters)

AIRBAGS AND TENSIONERS

- Front Airbags: Driver & front passenger
- Side Airbags: Driver & front passenger
- Tensioners: Driver & front passenger
- Side Curtain Airbags: Driver, front passenger & outer rear passengers

UNDERHOOD COMPONENTS

- Engine
- Motor
- 12V Battery
- Underhood Fuse Box

MAIN FUSE LOCATION

- Engine
- Motor
- 12V Battery
- Underhood Fuse Box
- Main Fuse Assembly Screws

CUT ZONE

- Underhood Fuse Box
- 12V Battery
- Engine, Motor & Transmission
- High-Voltage Cables
- Fuel Tank

Side Curtain Airbag Inflators
IDENTIFYING THE CIVIC HYBRID

The appearance of 2006-2011 Civic Hybrids is essentially the same as conventional Civic Sedans. The word “Hybrid” appears on the right rear of these vehicles.

KEY COMPONENTS

- Engine
- High-Voltage Cables
- High-Voltage Battery Box
- AC Compressor
- Motor
- 12V Battery
- Underhood Fuse Box
- Fuel Lines
- Fuel Tank

UNDERHOOD COMPONENTS MAIN FUSE LOCATION

- Motor
- Underhood Fuse Box
- 12-Volt Battery
- Main Fuse Assembly
- Screws
- Side Curtain Airbag Inflators

FLAMMABLE FLUIDS

- Gasoline: 12.4 gallons (47 liters)
- Engine Oil: 4.0 quarts (3.8 liters)
- Transmission Fluid: 5.4 quarts (5.1 liters)

AIRBAGS AND TENSIONERS

- Front Airbags: Driver & front passenger
- Side Airbags: Driver & front passenger
- Tensioners: Driver & front passenger
- Side Curtain Airbags: Driver, front passenger & outer rear passengers

CUT ZONE

- Underhood Fuse Box
- 12V Battery
- Engine, Motor & Transmission
- High-Voltage Cables
- Fuel Tank
IDENTIFYING THE CIVIC HYBRID

The appearance of the 2012 Civic Hybrid is essentially the same as conventional Civic sedans.

The word “Hybrid” appears on the right rear of the vehicle.

KEY COMPONENTS

FLAMMABLE FLUIDS
- Gasoline: 13.2 gallons (50 liters)
- Engine Oil: 3.8 quarts (3.6 liters)
- Transmission Fluid: 3.0 quarts (2.8 liters)

AIRBAGS AND TENSIONERS
- Front Airbags: Driver & front passenger
- Side Airbags: Driver & front passenger
- Tensioners: Driver & front passenger
- Side Curtain Airbags: Driver, front passenger & outer rear passengers

UNDERHOOD COMPONENTS

POSITIVE BATTERY TERMINAL

CUT ZONE
IDENTIFYING THE CIVIC HYBRID

The appearance of the 2012 Civic Hybrid is essentially the same as conventional Civic sedans. The word “Hybrid” appears on the right rear of the vehicle.

KEY COMPONENTS

AC Compressor
Motor
12V Battery
Underhood Fuse Box
Transmission
Fuel Line
Fuel Tank
High-Voltage Cables
High-Voltage Battery Box

FLAMMABLE FLUIDS

- Gasoline: 13.2 gallons (50 liters)
- Engine Oil: 3.8 quarts (3.6 liters)
- Transmission Fluid: 3.0 quarts (2.8 liters)

AIRBAGS AND TENSIONERS

- Front Airbags: Driver & front passenger
- Side Airbags: Driver & front passenger
- Tensioners: Driver & front passenger
- Side Curtain Airbags: Driver, front passenger & outer rear passengers

UNDERHOOD COMPONENTS

POSITIVE BATTERY TERMINAL

CUT ZONE
Identifying the Accord Hybrid

The appearance of an Accord Hybrid is essentially identical to that of a conventional Accord.

The word “Hybrid” appears directly under the name “Accord” above the right rear tail light.

Key Components

- Engine
- High-Voltage Cables
- Fuel Tank
- AC Compressor
- Motor
- Transmission
- 12V Battery
- Underhood Fuse Box
- Fuel Lines
- High-Voltage Battery Box

Underhood Components Main Fuse Location

- Engine
- Motor
- 12 Volt Battery
- Underhood Fuse Box
- Main Fuse Screw

Cut Zone

- Engine
- 12V Battery
- Motor
- AC Compressor
- Transmission
- High-Voltage Cables
- Fuel Tank
- Underhood Fuse Box

Flammable Fluids

- Gasoline: 17.1 gallons (64.7 liters)
- Engine Oil: 5.3 quarts (5.0 liters)
- Transmission Fluid: 8.2 quarts (7.8 liters)

Airbags and Tensioners

- Front Airbags: Driver & front passenger
- Side Airbags: Driver & front passenger
- Tensioners: Driver & front passenger
- Side Curtain Airbags: Driver, front passenger & outer rear passengers

2005-2007 Honda Accord Hybrid
FLAMMABLE FLUIDS
- Gasoline: 17.1 gallons (64.7 liters)
- Engine Oil: 5.3 quarts (5.0 liters)
- Transmission Fluid: 8.2 quarts (7.8 liters)

AIRBAGS AND TENSIONERS
- Front Airbags: Driver & front passenger
- Side Airbags: Driver & front passenger
- Tensioners: Driver & front passenger
- Side Curtain Airbags: Driver, front passenger & outer rear passengers

UNDERHOOD COMPONENTS MAIN FUSE LOCATION
- Screw

CUT ZONE
- Side Curtain Airbag Inflators
IDENTIFYING THE CR-Z

The 2011 CR-Z is a 2-door, 2-passenger sport car. A hybrid badge appears on the right rear of the vehicle.

KEY COMPONENTS

- Engine
- Motor
- Transmission
- 12V Battery
- Fuel Tank
- Positive Battery Terminal
- Fuel Lines
- High-Voltage Cables
- High-Voltage Battery Box

FLAMMABLE FLUIDS

- Gasoline: 10.6 gallons (40 liters)
- Engine Oil: 3.8 quarts (3.6 liters)
- Transmission Fluid:
 - CVT: 3.0 quarts (2.8 liters)
 - Manual: 1.5 quarts (1.4 liters)

AIRBAGS AND TENSIONERS

- Front Airbags: Driver & passenger
- Tensioners: Driver & passenger
- Side Airbags: Driver & passenger
- Side Curtain Airbags: Driver & passenger

UNDERHOOD COMPONENTS

- Engine
- Motor
- Positive Battery Terminal
- 12-Volt Battery
- DC to DC Converter Cable Connection

CUT ZONE

- Engine, Motor & Transmission
- Positive Battery Terminal
- 12V Battery
- High-Voltage Cables
- Fuel Tank
- High-Voltage Battery Box
2011-2012 Honda CR-Z

Identifying the CR-Z

The 2011 CR-Z is a 2-door, 2-passenger sport car.

A hybrid badge appears on the right rear of the vehicle.

Key Components

- **Engine**
- **Motor**
- **Transmission**
- **12V Battery**
- **Fuel Tank**
- **High-Voltage Cables**
- **Fuel Lines**
- **Positive Battery Terminal**

Flammable Fluids

- **Gasoline:** 10.6 gallons (40 liters)
- **Engine Oil:** 3.8 quarts (3.6 liters)
- **Transmission Fluid:**
 - CVT: 5.0 quarts (2.8 liters)
 - Manual: 1.5 quarts (1.4 liters)

Airbags and Tensioners

- **Front Airbags:** Driver & passenger
- **Tensioners:** Driver & passenger
- **Side Airbags:** Driver & passenger
- **Side Curtain Airbags:** Driver & passenger

Underhood Components

Positive Battery Terminal

Cut Zone